Fluorinated Materials for Energy Conversion
2 contributors - Hardback
£245.00
Tsuyoshi Nakajima is Professor in the Department of Applied Chemistry, Aichi Institute of Technology in Japan. He has worked on fluorine chemistry and electrochemistry (that is, fluorinated materials) for primary and rechargeable lithium batteries, and fluorine-, fluoride-, or oxyfluoride-graphite intercalation compounds. Li/(CF)n battery is the first primary lithium battery commercialized on the basis of the research on graphite fluoride which was performed in his laboratory at Kyoto University. His research was on the discharge mechanism of Li/(CF)n battery and synthesis of graphite fluoride, (CF)n with excellent discharge performance. The importance of carbon-fluorine compounds as battery materials was first recognized by graphite fluoride cathode of Li/(CF)n battery. Furthermore, new graphite anode for electrolytic production of fluorine gas was developed on the basis of his work on fluorine-graphite intercalation compound with high electrical conductivity. Recently. his research interest is on the application of fluorine chemistry to rechargeable lithium batteries. Fluorination techniques were applied to surface modification of graphite anode which increases the capacities of graphite anode and enables the low temperature operation of lithium ion battery. For the application of lithium ion battery using flammable organic solvents to electric sources of hybrid and electric vehicles, high safety is the most important issue. He has found that organo-fluorine compounds are excellent new solvents with high oxidation stability (that is, high safety for rechargeable lithium batteries). He published about 230 papers and 24 books. In academic societies, he served as chairman of JSPS 155th Committee on Fluorine Chemistry; The Society of Fluorine Chemistry, Japan; Executive Committee of Carbon Society of Japan; and Regional Editor and Editorial Board of J. Fluorine Chemistry. Henri Groult is Director of Research of CNRS-UPMC-ESPCI UMR 7612, University of Pierre and Marie Curie (Paris 6) in France. He has devoted his research life to fluorine chemistry, electrochemistry, and molten salt chemistry. His main research subjects are electrolytic production of fluorine gas, fluorine compounds for primary and secondary lithium batteries, and electrochemical properties of molten fluorides and chlorides. He has obtained interesting results on fluorine evolution reaction on carbon electrodes, discharge behavior of carbon-fluorine compounds, charge/discharge characteristics of metal fluorides, and electrochemical properties of molten salts. On these subjects, he published more than 100 papers and 7 books. His activity has played an important role in fluorine chemistry in France. He has served as Director of the French Network of Fluorine, Chairman of the 17th European Symposium on Fluorine Chemistry (Paris, July 2013), and Editorial board of J. Fluorine Chemistry.