Tunable Hydrogels
3 contributors - Hardback
£279.99
Dr. Antonina Lavrentieva is a group leader at the Institute of Technical Chemistry, Leibniz University of Hannover, working in the field of stem cell research, biotesting and tissue engineering. In her second Ph.D. thesis, she studied methods of expanding mesenchymal stem cells (MSCs) in bioreactors, as well as the influence of hypoxia on the MSCs. She studied Biology and Life Science at Moscow State University and the University of Hannover, and she also defended a Ph.D. thesis in Physiology. Her current research interests include stem cell media optimization, hypoxia, 3D cell culture and gradient hydrogels for studying stem cell niches and 3D-bioprinting. She is also the current head of the advisory board of DECHEMA professional group "Medical biotechnology".
Dr. Iliyana Pepelanova is a group leader at the Institute of Technical Chemistry at the Lebniz Univeristy of Hannover. She holds degrees in Chemistry (B. Eng.) and Life Science (M. Sc.), and received a Ph.D. in Biotechnology from the Leibniz University in 2012. Her research focuses on the synthesis of biohybrid hydrogels with tunable mechanical properties for 3D cell culture and biomedical applications. Her group also investigates the production of protein-based hydrogels from the extracellular matrix in simple microorganisms using recombinant technology. Additional areas of research include the production of bioactive nanopills and the production of recombinant cytokines in animal-component free processes for easier regulatory certification.
Prof. Dr. Dror Seliktar is an Associate Professor at the Technion Faculty of Biomedical Engineering. Dr. Seliktar received his B.Sc. in Mechanical Engineering from Drexel University in 1994 and his M.Sc. in Mechanical Engineering and Ph.D. in Biomedical Engineering from the Georgia Institute of Technology in 2000. His research focuses on tissue engineering and regenerative medicine, including the design and development of bio-synthetic hybrid hydrogels for tissue engineering and regeneration; the regulation of cellular morphogenesis via physical properties of the provisional extracellular matrix in three dimensional cultures; and the use of mechanical stimulation for optimizing the development of tissue engineered constructs.