Advances in the Collision and Grounding of Ships and Offshore Structures
2 contributors - Hardback
£170.00
Carlos Guedes Soares is a Distinguished Professor of Naval Architecture and Marine Engineering at Instituto Superior Técnico, University of Lisbon, Portugal. He received his Master and Ocean Engineer degrees from the Massachusetts Institute of Technology, Cambridge, in 1976, his PhD degree from the Norwegian Institute of Science and Technology, Trondheim, Norway, in 1984, and his Doctor of Science degree from the Technical University of Lisbon, Lisbon, Portugal, in 1991. He is also the Scientific Coordinator of the Centre for Marine Technology and Engineering (CENTEC), a research centre of Instituto Superior Técnico that is recognized and funded by the Portuguese Foundation for Science and Technology. He has supervised more than 75 PhD degree students and co-authored more than 900 journal papers. He has been involved in more than 60 international research projects and 20 national projects as well as the organisation of several International Conferences. He is a Fellow of SNAME, RINA, IMarEST, ASME and of the Portuguese Association of Engineers (Ordem dos Engenheiros) where he has held different responsibilities and duties for more than 30 years.
Hervé Le Sourne is professor at Icam Engineering School (Nantes campus) and researcher at GeM Institute, a joint laboratory of the French national center for scientific research (CNRS). He is also the coordinator of the academic research over the international group of Icam Engineering Schools. As engineer in Scientific Computing and in Mechanical Engineering, he received his PhD degree from Centrale Nantes in 1998 and his habilitation to conduct research (HDR) in 2015 from Nantes University. Before joining Icam in 2008, he worked for 12 years in several French Navy shipyards and spent 9 years at the French Shipbuilding Research Institute. His research activity is mainly focused on structural dynamics and fluid structure interactions. More precisely, it aims at developing fast, and reliable tools based on meshless approaches to analyze the response of immersed structures subjected to dynamics loads (vibrations, collisions, grounding, and underwater explosions).