Erica E M Moodie Editor

Eric B. Laber is the James B. Duke Distinguished Professor of Statistical Sciences and Biostatistics and Bioinformatics at Duke University. He is a fellow of the American Statistical Association and International Statistical Institute as well as the recipient of the Gottfried E. Noether Award, the Raymond J. Carroll Award, and the American Statistical Association Outstanding Application Award.

Bibhas Chakraborty is an Associate Professor jointly appointed by the Duke-National University of Singapore Medical School (Duke-NUS) and the Department of Statistics and Data Science at the National University of Singapore. He also holds an adjunct faculty position with the Department of Biostatistics and Bioinformatics at Duke University. He is a 2011 recipient of the Calderone Research Prize for Junior Faculty from Columbia University, a 2017 recipient of the Young Statistical Scientist Award from the International Indian Statistical Association and is an Elected Member of the International Statistical Institute (ISI). Along with Dr. Erica E.M. Moodie, he co-authored the first textbook on dynamic treatment regimes (Springer, New York, 2013).

Erica E. M. Moodie is Professor of Biostatistics and Canada Research Chair in Statistical Methods for Precision Medicine at McGill University. She is the 2020 recipient of the CRM-SSC Prize in Statistics, is an Elected Member of the International Statistical Institute, and holds a chercheur de mérite career award from the Fonds de recherche du Québec-Santé. Dr Moodie is the Co-Editor of Biometrics and a Statistical Editor of Journal of Infectious Diseases.

Tianxi Cai is the John Rock Professor of Population and Translational Data Science at Harvard Chan School of Public Health (HSPH) and a Professor of Biomedical Informatics at Harvard Medical School (HMS). Dr. Cai’s research includes statistical learning methods for efficient analysis of multi-institutional electronic health records data, real world evidence, and precision medicine using large scale genomic and phenomic data.

Mark van der Laan is the Jiann-Ping Hsu/Karl E. Peace Professor in Biostatistics and Statistics at the University of California, Berkeley. Mark research interests include censored data, causal inference, genomics and adaptive designs. Mark has led the development of Targeted Learning, including Super Learning and Targeted maximum likelihood estimation (TMLE). In 2005 Mark was awarded the Committee of Presidents of Statistical Societies (COPSS) Presidential Award. He also received the 2004 Spiegelman Award and 2005 van Dantzig Award. He is co-founder of the international Journal of Biostatistics and Journal of Causal Inference, and has authored various Springer books on Targeted Learning, Censored Data and Multiple Testing.