Adaptive Learning Methods for Nonlinear System Modeling
2 contributors - Paperback
£125.00
Danilo Comminiello is a Tenure-Track Assistant Professor with the Department of Information Engineering, Electronics and Telecommunications (DIET) at Sapienza University of Rome, Italy, where he teaches Machine Learning for Signal Processing. His current research interests include computational intelligence and machine learning theory, particularly focused on audio and acoustic applications. Danilo Comminiello is a Senior Member of “Institute of Electrical and Electronics Engineers (IEEE), and Member of “Audio Engineering Society (AES) and “European Association for Signal Processing (EURASIP). He is also a member of the “Task Force on Computational Audio Processing of the IEEE “Intelligent System Applications Technical Committee (IEEE Computational Intelligence Society). Jose C. Principe is a Distinguished Professor of Electrical and Computer Engineering and Biomedical Engineering at the University of Florida where he teaches advanced signal processing, machine learning and artificial neural networks (ANNs) modeling. He is BellSouth Professor and the Founding Director of the University of Florida Computational NeuroEngineering Laboratory (CNEL). His primary research interests are in advanced signal processing with information theoretic criteria (entropy and mutual information) and adaptive models in reproducing kernel Hilbert spaces (RKHS), and the application of these advanced algorithms to Brain Machine Interfaces (BMI). Dr. Principe is a Fellow of the IEEE, ABME, and AIBME. He is the past Editor in Chief of the IEEE Transactions on Biomedical Engineering, past Chair of the Technical Committee on Neural Networks of the IEEE Signal Processing Society, and Past-President of the International Neural Network Society. He received the IEEE EMBS Career Award, and the IEEE Neural Network Pioneer Award. He has more than 600 publications and 30 patents (awarded or filed).