Patch-Based Techniques in Medical Imaging
5 contributors - Paperback
£44.99
Professor S. Kevin Zhou obtained his PhD degree from University of Maryland, College Park. He is a Professor at Chinese Academy of Sciences. Prior to this, he was a Principal Expert and a Senior R&D director at Siemens Healthcare. Dr. Zhou has published 180+ book chapters and peer-reviewed journal and conference papers, registered 250+ patents and inventions, written two research monographs, and edited three books. His two most recent books are entitled "Medical Image Recognition, Segmentation and Parsing: Machine Learning and Multiple Object Approaches, SK Zhou (Ed.)" and "Deep Learning for Medical Image Analysis, SK Zhou, H Greenspan, DG Shen (Eds.)." He has won multiple awards including R&D 100 Award (Oscar of Invention), Siemens Inventor of the Year, and UMD ECE Distinguished Aluminum Award. He has been an associate editor for IEEE Transactions on Medical Imaging and Medical Image Analysis, an area chair for CVPR and MICCAI, a board member of the MICCAI Society. Professor Zhou is a Fellow of AIMBE. Professor Daniel Rueckert is Head of the Department of Computing at Imperial College London. He joined the Department of Computing as a lecturer in 1999 and became senior lecturer in 2003. Since 2005 he is Professor of Visual Information Processing. He has founded and leads the Biomedical Image Analysis group. His research interests include: Development of algorithms for image acquisition, image analysis and image interpretation, in particular in the areas of reconstruction, registration, tracking, segmentation and modelling; and novel machine learning approaches for the extraction of clinically useful information from medical images with application to computer-aided detection and diagnosis, computer-aided treatment planning, computer-guided interventions and therapy. He is an associate editor of IEEE Transactions on Medical Imaging, a member of the editorial board of Medical Image Analysis, Image & Vision Computing, MICCAI/Elsevier Book Series, and a referee for a number of international medical imaging journals and conferences. He has served as a member of organizing and program committees at numerous conferences, e.g. general co-chair of MMBIA 2006 and FIMH 2013 as well as program co-chair of MICCAI 2009, ISBI 2012 and WBIR 2012. He was elected as a Fellow of MICCAI in 2014, Fellow of the Royal Academy of Engineering in 2015 and, most recently, a Fellow of the Academy of Medical Sciences in 2019. Professor Gabor Fichtinger is a Canada Research Chair in Computer-Integrated Surgery, at the School of Computing, Queen’s University, Canada. His research and teaching interests are Computer-Assisted Interventions, involving medical imaging, medical image analysis, visualization, surgical planning and navigation, robotics, biosensors, and integrating these component technologies into workable clinical systems. He further specializes in minimally invasive percutaneous (through the skin) interventions performed under image guidance, with primary application in the detection and treatment of cancer. He is an associate editor of IEEE Transactions on Biomedical Engineering, a member of the editorial board of Medical Image Analysis, and a deputy editor for the International Journal of Computer-Assisted Radiology and Surgery. He has served on the program and organizing committees of leading international conferences, including SPIE Medical Imaging and IPCAI; he was general co-chair for MICCAI 2011, and program co-chair for MICCAI 2008 and 2018. Professor Fichtinger is a Fellow of IEEE and a Fellow of MICCAI.