Machine Learning Empowered Intelligent Data Center Networking

Evolution, Challenges and Opportunities

Shui Yu author Ting Wang author Bo Li author Mingsong Chen author

Format:Paperback

Publisher:Springer Verlag, Singapore

Published:22nd Feb '23

Currently unavailable, and unfortunately no date known when it will be back

Machine Learning Empowered Intelligent Data Center Networking cover

An Introduction to the Machine Learning Empowered Intelligent Data Center Networking

Fundamentals of Machine Learning in Data Center Networks. This book reviews the common learning paradigms that are widely used in data centernetworks, and offers an introduction to data collection and data processing in data centers. Additionally, it proposes a multi-dimensional and multi-perspective solution quality assessment system called REBEL-3S. The book offers readers a solid foundation for conducting research in the field of AI-assisted data center networks.

Comprehensive Survey of AI-assisted Intelligent Data Center Networks. This book comprehensively investigates the peer-reviewed literature published in recent years. The wide range of machine learning techniques is fully reflected to allow fair comparisons. In addition, the book provides in-depth analysis and enlightening discussions on the effectiveness of AI in DCNs from various perspectives, covering flow prediction, flow classification, load balancing, resource management, energy management, routing optimization, congestion control, fault management, and network security.

Provides a Broad Overview with Key Insights. This book introduces several novel intelligent networking concepts pioneered by real-world industries, such as Knowledge Defined Networks, Self-Driving Networks, Intent-driven Networks and Intent-based Networks. Moreover, it shares unique insights into the technological evolution of the fusion of artificial intelligence and data center networks, together with selected challenges and future research opportunities.

ISBN: 9789811973949

Dimensions: unknown

Weight: unknown

112 pages

1st ed. 2023