Singular Integrals and Fourier Theory on Lipschitz Boundaries
Tao Qian author Pengtao Li author
Format:Hardback
Publisher:Springer Verlag, Singapore
Published:29th Mar '19
Currently unavailable, and unfortunately no date known when it will be back
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
“The main audience for this book would be those interested in the importance of Fourier multipliers in Harmonic Analysis. … this book would serve as a nice reference on recent developments on singular integrals and Fourier multipliers on various Lipschitz surfaces.” (Eric Stachura, MAA Reviews, December 22, 2019)
ISBN: 9789811364990
Dimensions: unknown
Weight: unknown
306 pages
1st ed. 2019