Quantization on Nilpotent Lie Groups

Michael Ruzhansky author Veronique Fischer author

Format:Paperback

Publisher:Birkhauser Verlag AG

Published:20th Apr '18

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Quantization on Nilpotent Lie Groups cover

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups.

The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.

“The main topic of this prize-winning monograph is the development of a pseudo-differential calculus on homogeneous Lie groups–the nilpotent Lie group equipped with a family of dilations compatible with the group structure. … It is really surprising that in spite of its great length and complicated subject, this book is very accessible.”(Antoni Wawrzyńczyk, Mathematical Reviews, April, 2017)

“We want to remark that the contents of the volume are extremely rich. Beside presenting the new theory in the graded nilpotent case, the authors offer a complete view of the calculus of pseudo-differential operators on groups giving detailed references to preceding contributions. Also, we note the big effort to provide a self-contained presentation, addressed to a large audience. This monograph was the winner of the 2016 Ferran Sunyer i Balanguer prize.” (Luigi Rodino, zbMATH 1347.22001, 2

ISBN: 9783319805993

Dimensions: unknown

Weight: 866g

557 pages