Embedding Problems in Symplectic Geometry
Format:Hardback
Publisher:De Gruyter
Published:18th Apr '05
Currently unavailable, and unfortunately no date known when it will be back
Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.
"This book based on the Ph.D. thesis of the author may serve as a very good introduction to symplectic rigidity and symplectic embeddings."Iskander A. Taimanov in: Zentralblatt fur Mathematik 24/2005
ISBN: 9783110178760
Dimensions: unknown
Weight: 576g
260 pages