An Introduction to Statistical Learning
with Applications in Python
Jonathan Taylor author Gareth James author Trevor Hastie author Robert Tibshirani author Daniela Witten author
Format:Paperback
Publisher:Springer International Publishing AG
Published:2nd Jul '24
Should be back in stock very soon
This paperback is available in another edition too:
- Hardback£99.99(9783031387463)
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data.
Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
“The book adopts a hands-on, practical approach to teaching statistical learning, featuring numerous examples and case studies, accompanied by Python code for implementation. It stands as a contemporary classic, offering clear and intuitive guidance on how to implement cutting-edge statistical and machine learning methods. If you wish to intelligently use data analytics tools and techniques for analyzing big and/or complex data, this book should be front and center on your bookshelf.” (David Han, Mathematical Reviews, May 10, 2024)
ISBN: 9783031391897
Dimensions: unknown
Weight: unknown
60 pages
2023 ed.