Continuous Time Processes for Finance

Switching, Self-exciting, Fractional and other Recent Dynamics

Donatien Hainaut author

Format:Hardback

Publisher:Springer International Publishing AG

Published:26th Aug '22

Should be back in stock very soon

Continuous Time Processes for Finance cover

This book explores recent topics in quantitative finance with an emphasis on applications and calibration to time-series. This last aspect is often neglected in the existing mathematical finance literature while it is crucial for risk management. The first part of this book focuses on switching regime processes that allow to model economic cycles in financial markets. After a presentation of their mathematical features and applications to stocks and interest rates, the estimation with the Hamilton filter and Markov Chain Monte-Carlo algorithm (MCMC) is detailed. A second part focuses on self-excited processes for modeling the clustering of shocks in financial markets. These processes recently receive a lot of attention from researchers and we focus here on its econometric estimation and its simulation. A chapter is dedicated to estimation of stochastic volatility models. Two chapters are dedicated to the fractional Brownian motion and Gaussian fields. After a summary of their features, we present applications for stock and interest rate modeling. Two chapters focuses on sub-diffusions that allows to replicate illiquidity in financial markets. This book targets undergraduate students who have followed a first course of stochastic finance and practitioners as quantitative analyst or actuaries working in risk management.

“Hainaut has written a book which in such panorama has a position of its own and which should be considered with great interest. … the book should definitely be considered an excellent and warmly recommended read. It is likely that it will be soon become a reference for those interested in modern topics and for young researchers in particular.” (Gianluca Cassese, zbMATH 1512.91001, 2023)

ISBN: 9783031063602

Dimensions: unknown

Weight: unknown

345 pages

1st ed. 2022