DownloadThe Portobello Bookshop Gift Guide 2024

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Tome Eftimov author Peter Korošec author

Format:Paperback

Publisher:Springer Nature Switzerland AG

Published:12th Jun '23

Should be back in stock very soon

This paperback is available in another edition too:

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms cover

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.

The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:

Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.

“The book is well written and the presentation is easy to follow. It will be useful to students and researchers dealing with metaheuristic stochastic optimization, but also to practitioners who want to know how to choose the best methods to solve the real-life problems they face.” (Marcin Anholcer, zbMATH 1504.90003, 2023)

ISBN: 9783030969196

Dimensions: unknown

Weight: unknown

133 pages

1st ed. 2022