Geometric Structures of Statistical Physics, Information Geometry, and Learning

SPIGL'20, Les Houches, France, July 27–31

Frédéric Barbaresco editor Frank Nielsen editor

Format:Hardback

Publisher:Springer Nature Switzerland AG

Published:27th Jun '21

Currently unavailable, our supplier has not provided us a restock date

Geometric Structures of Statistical Physics, Information Geometry, and Learning cover

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

ISBN: 9783030779566

Dimensions: unknown

Weight: unknown

459 pages

1st ed. 2021