DownloadThe Portobello Bookshop Gift Guide 2024

Bifurcation and Stability in Nonlinear Dynamical Systems

Albert C J Luo author

Format:Hardback

Publisher:Springer Nature Switzerland AG

Published:31st Jan '20

Should be back in stock very soon

This hardback is available in another edition too:

Bifurcation and Stability in Nonlinear Dynamical Systems cover

This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. 

  • Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;
  • Discusses dynamics of infinite-equilibrium systems;
  • Demonstrates higher-order singularity.

“The book should be of interest to research and practising scientists and engineers as well as Ph.D. students in the field of nonlinear dynamical systems and control theory.” (Clementina Mladenova, zbMATH 1440.93005, 2020)

ISBN: 9783030229092

Dimensions: unknown

Weight: unknown

411 pages

1st ed. 2019