Supervised and Unsupervised Learning for Data Science

Michael W Berry editor Azlinah Mohamed editor Bee Wah Yap editor

Format:Paperback

Publisher:Springer Nature Switzerland AG

Published:19th Sep '20

Currently unavailable, and unfortunately no date known when it will be back

Supervised and Unsupervised Learning for Data Science cover

This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018).

  • Includes new advances in clustering and classification using semi-supervised and unsupervised learning;
  • Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning;
  • Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning.


ISBN: 9783030224776

Dimensions: unknown

Weight: unknown

187 pages

1st ed. 2020