DownloadThe Portobello Bookshop Gift Guide 2024

Unsupervised Feature Extraction Applied to Bioinformatics

A PCA Based and TD Based Approach

Y H Taguchi author

Format:Paperback

Publisher:Springer Nature Switzerland AG

Published:5th Sep '20

Currently unavailable, and unfortunately no date known when it will be back

Unsupervised Feature Extraction Applied to Bioinformatics cover

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyze data sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

ISBN: 9783030224585

Dimensions: unknown

Weight: unknown

321 pages

2020 ed.