DownloadThe Portobello Bookshop Gift Guide 2024

On Stein's Method for Infinitely Divisible Laws with Finite First Moment

Benjamin Arras author Christian Houdre author

Format:Paperback

Publisher:Springer Nature Switzerland AG

Published:26th Apr '19

Currently unavailable, and unfortunately no date known when it will be back

On Stein's Method for Infinitely Divisible Laws with Finite First Moment cover

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.

“This monograph is an excellent starting point for researchers to explore this fascinating area.” (Fraser Daly, zbMATH 1447.60052, 2020)
“The book is interesting and well written. It may be recommended as a must-have item to the researchers interested in limit theorems of probability theory as well as to other probability theorists.” (Przemysław matuła, Mathematical Reviews, January, 2020)

ISBN: 9783030150167

Dimensions: unknown

Weight: unknown

104 pages

1st ed. 2019