Advances in Fusion Energy Research
From Theory to Models, Algorithms, and Applications
Aamir Shahzad editor Bruno Carpentieri editor
Format:Hardback
Publisher:IntechOpen
Published:14th Dec '22
Currently unavailable, currently targeted to be due back around 19th November 2024, but could change
Fusion power may offer a long-term energy supply with an uninterrupted power delivery, a high power-generation density, and no greenhouse gas emissions, contributing to preventing the worst effects of climate change and making an enduring contribution to future energy supply. However, the intense conditions inside a fusion power plant (extreme temperatures and high magnetic fields necessary for nuclear fusion) call for addressing several potential problems. These include the development of new materials with extremely high heat tolerances and low enough vapor pressure and the design of mechanical structures that can withstand the electromagnetic force generated as well as feedback controllers to measure and counteract the unstable modes of evolution of the plasma, to name a few. The future of nuclear fusion as an efficient alternative energy source depends largely on techniques that enable us to control these instabilities. Mathematical modelling and physical experiments attempt to overcome some of the hindrances posed by these complexities. This book provides a comprehensive overview of the current state of the art in this fascinating and critically important field of pure and applied physics, mathematics, and engineering, presenting some of the most recent developments in theory, modelling, algorithms, experiments, and applications.
ISBN: 9781803562780
Dimensions: unknown
Weight: unknown
180 pages