Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster
Cheryl E Praeger author Michael Giudici author Alexander Bors author
Format:Paperback
Publisher:American Mathematical Society
Published:31st Jul '23
Currently unavailable, our supplier has not provided us a restock date
![Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster cover](https://cdn.theportobellobookshop.com/img/9781470465445.jpg)
For a finite group G, we denote by ?(G) the number of Aut(G)-orbits on G, and by o(G) the number of distinct element orders in G. In this paper, we are primarily concerned with the two quantities d(G) := ?(G) ? o(G) and q(G) := ?(G)/ o(G), each of which may be viewed as a measure for how far G is from being an AT-group in the sense of Zhang (that is, a group with ?(G) = o(G)). We show that the index |G : Rad(G)| of the soluble radical Rad(G) of G can be bounded from above both by a function in d(G) and by a function in q(G) and o(Rad(G)). We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group M.
ISBN: 9781470465445
Dimensions: unknown
Weight: unknown
95 pages