Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems
Laurent Lazzarini author Jean-Pierre Marco author David Sauzin author
Format:Paperback
Publisher:American Mathematical Society
Published:30th Mar '19
Should be back in stock very soon
A wandering domain for a diffeomorphism $\Psi $ of $\mathbb A^n=T^*\mathbb T^n$ is an open connected set $W$ such that $\Psi ^k(W)\cap W=\emptyset $ for all $k\in \mathbb Z^*$. The authors endow $\mathbb A^n$ with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map $\Phi ^h$ of a Hamiltonian $h: \mathbb A^n\to \mathbb R$ which depends only on the action variables, has no nonempty wandering domains.
The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of $\Phi ^h$, in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the ``quantitative Hamiltonian perturbation theory'' initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.
ISBN: 9781470434922
Dimensions: unknown
Weight: 183g
106 pages