DownloadThe Portobello Bookshop Gift Guide 2024

Covering Dimension of C*-Algebras and 2-Coloured Classification

Stuart White author Nathanial P Brown author Joan Bosa author Yasuhiko Sato author Aaron Tikuisis author

Format:Paperback

Publisher:American Mathematical Society

Published:30th Mar '19

Should be back in stock very soon

Covering Dimension of C*-Algebras and 2-Coloured Classification cover

The authors introduce the concept of finitely coloured equivalence for unital $^*$-homomorphisms between $\mathrm C^*$-algebras, for which unitary equivalence is the $1$-coloured case. They use this notion to classify $^*$-homomorphisms from separable, unital, nuclear $\mathrm C^*$-algebras into ultrapowers of simple, unital, nuclear, $\mathcal Z$-stable $\mathrm C^*$-algebras with compact extremal trace space up to $2$-coloured equivalence by their behaviour on traces; this is based on a $1$-coloured classification theorem for certain order zero maps, also in terms of tracial data.

As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, $\mathcal Z$-stable $\mathrm C^*$-algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a ``homotopy equivalence implies isomorphism'' result for large classes of $\mathrm C^*$-algebras with finite nuclear dimension.

ISBN: 9781470434700

Dimensions: unknown

Weight: 210g

97 pages