Computational Nanotechnology Using Finite Difference Time Domain

Sarhan M Musa editor

Format:Hardback

Publisher:Taylor & Francis Inc

Published:16th Dec '13

Currently unavailable, and unfortunately no date known when it will be back

This hardback is available in another edition too:

Computational Nanotechnology Using Finite Difference Time Domain cover

The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe.

Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts.

Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.

"It introduces a cutting-edge FDTD algorithm in nanotechnology, which is a hotspot in science and engineering. … It can be used as a course [text] for graduate students. … There is no competition, because the book’s contents are quite cross-disciplinary."
—Wei E.I. Sha, Department of Electrical and Electronic Engineering, The University of Hong Kong, People’s Republic of China

ISBN: 9781466583610

Dimensions: unknown

Weight: 725g

426 pages