Lectures on N_X(p)

Jean-Pierre Serre author

Format:Hardback

Publisher:Taylor & Francis Inc

Published:3rd Nov '11

Should be back in stock very soon

This hardback is available in another edition too:

Lectures on N_X(p) cover

Lectures on NX(p) deals with the question on how NX(p), the number of solutions of mod p congruences, varies with p when the family (X) of polynomial equations is fixed. While such a general question cannot have a complete answer, it offers a good occasion for reviewing various techniques in l-adic cohomology and group representations, presented in a context that is appealing to specialists in number theory and algebraic geometry.

Along with covering open problems, the text examines the size and congruence properties of NX(p) and describes the ways in which it is computed, by closed formulae and/or using efficient computers.

The first four chapters cover the preliminaries and contain almost no proofs. After an overview of the main theorems on NX(p), the book offers simple, illustrative examples and discusses the Chebotarev density theorem, which is essential in studying frobenian functions and frobenian sets. It also reviews ℓ-adic cohomology.

The author goes on to present results on group representations that are often difficult to find in the literature, such as the technique of computing Haar measures in a compact ℓ-adic group by performing a similar computation in a real compact Lie group. These results are then used to discuss the possible relations between two different families of equations X and Y. The author also describes the Archimedean properties of NX(p), a topic on which much less is known than in the ℓ-adic case. Following a chapter on the Sato-Tate conjecture and its concrete aspects, the book concludes with an account of the prime number theorem and the Chebotarev density theorem in higher dimensions.

"The book is written by a master in the area. It puts the objects it treats into their natural conceptual framework. … The book is highly recommended to anyone interested in the fundamental questions it treats. Those enjoying the mathematics created by Serre will also find pleasure and inspiration in this book."
—Gabor Wiese, Mathematical Reviews, April 2013

"This book may be regarded (and can be used) both as an introduction to the modern algebraic geometry, written by one of its creators, and as a research monograph, investigating in depth …"
—B.Z. Moroz, Zentralblatt MATH 1238

"the mathematics is exquisite and the presentation is wonderful. … The development of the background mathematics and methodology is crystal clear. … this is another terrific book by Serre: it provides a splendid introduction to both a beautiful arithmetic (-geometric) theme and hugely important mathematical methods pertaining to the given theme. It should tantalize the reader and move him to go into these themes in greater depth, using Serre’s exposition as a high-level road map."
—Michael Berg, MAA Reviews, June 2012

ISBN: 9781466501928

Dimensions: unknown

Weight: 360g

174 pages