Neural Networks and Statistical Learning
Ke-Lin Du author M N S Swamy author
Format:Paperback
Publisher:Springer London Ltd
Published:25th Sep '20
Currently unavailable, and unfortunately no date known when it will be back
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.
Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:
• multilayer perceptron;
• the Hopfield network;
• associative memory models;• clustering models and algorithms;
• t he radial basis function network;
• recurrent neural networks;
• nonnegative matrix factorization;
• independent component analysis;
•probabilistic and Bayesian networks; and
• fuzzy sets and logic.
Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
“Neural Networks and Statistical Learning by Ke-Lin Du and M. N. S. Swamy can be seen as a central reference point for the mathematical understanding and implementation of the core ideas of neuronal networks and statistical learning techniques.” (Jan Pablo Burgard, SIAM Review, Vol. 62 (4), 2020)
ISBN: 9781447174547
Dimensions: unknown
Weight: unknown
988 pages
2nd ed. 2019