Markov Models for Pattern Recognition
From Theory to Applications
Format:Paperback
Publisher:Springer London Ltd
Published:27th Aug '16
Currently unavailable, and unfortunately no date known when it will be back
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
From the book reviews:
“The book is highly appropriate for researchers and practitioners dealing with pattern recognition in general and speech, character and handwriting recognition sequences, in particular.” (Catalin Stoean, zbMATH 1307.68001, 2015)
ISBN: 9781447171331
Dimensions: unknown
Weight: 4453g
276 pages
Softcover reprint of the original 2nd ed. 2014