Factoring Groups into Subsets

Sandor Szabo author Arthur D Sands author

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:21st Jan '09

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Factoring Groups into Subsets cover

Decomposing an abelian group into a direct sum of its subsets leads to results that can be applied to a variety of areas, such as number theory, geometry of tilings, coding theory, cryptography, graph theory, and Fourier analysis. Focusing mainly on cyclic groups, Factoring Groups into Subsets explores the factorization theory of abelian groups.

The book first shows how to construct new factorizations from old ones. The authors then discuss nonperiodic and periodic factorizations, quasiperiodicity, and the factoring of periodic subsets. They also examine how tiling plays an important role in number theory. The next several chapters cover factorizations of infinite abelian groups; combinatorics, such as Ramsey numbers, Latin squares, and complex Hadamard matrices; and connections with codes, including variable length codes, error correcting codes, and integer codes. The final chapter deals with several classical problems of Fuchs.

Encompassing many of the main areas of the factorization theory, this book explores problems in which the underlying factored group is cyclic.

The book under review was written by two leading experts in this field.… The exposition is clear and detailed—it is enriched with examples and exercises—making the book, as envisioned by the authors, readily accessible to non-experts in the field.
Mathematical Reviews, Issue 2010h

ISBN: 9781420090468

Dimensions: unknown

Weight: 476g

286 pages