DownloadThe Portobello Bookshop Gift Guide 2024

Machine Learning Evaluation

Towards Reliable and Responsible AI

Nathalie Japkowicz author Zois Boukouvalas author

Format:Hardback

Publisher:Cambridge University Press

Published:21st Nov '24

Currently unavailable, and unfortunately no date known when it will be back

Machine Learning Evaluation cover

A practical guide to robust performance evaluation methods machine learning models for modern industrial-strength applications.

This accessible, comprehensive guide is aimed at students, practitioners, engineers, and users. The emphasis is on building robust, responsible machine learning products incorporating meaningful metrics, rigorous statistical analysis, fair training sets, and explainability. Implementations in Python and sklearn are available on the book's website.As machine learning applications gain widespread adoption and integration in a variety of applications, including safety and mission-critical systems, the need for robust evaluation methods grows more urgent. This book compiles scattered information on the topic from research papers and blogs to provide a centralized resource that is accessible to students, practitioners, and researchers across the sciences. The book examines meaningful metrics for diverse types of learning paradigms and applications, unbiased estimation methods, rigorous statistical analysis, fair training sets, and meaningful explainability, all of which are essential to building robust and reliable machine learning products. In addition to standard classification, the book discusses unsupervised learning, regression, image segmentation, and anomaly detection. The book also covers topics such as industry-strength evaluation, fairness, and responsible AI. Implementations using Python and scikit-learn are available on the book's website.

'By its nature, machine learning has always had evaluation at its heart. As the authors of this timely and important book note, the importance of doing evaluation properly is only increasing as we enter the age of machine learning deployment. The book showcases Japkowicz' and Boukouvalas' encyclopaedic knowledge of the subject as well as their accessible and lucid writing style. Quite simply required reading for machine learning researchers and professionals.' Peter Flach, University of Bristol

ISBN: 9781316518861

Dimensions: 244mm x 170mm x 24mm

Weight: 949g

426 pages