Monte Carlo Simulation for the Pharmaceutical Industry

Concepts, Algorithms, and Case Studies

Mark Chang author

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:25th Oct '18

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Monte Carlo Simulation for the Pharmaceutical Industry cover

Helping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and methods needed to carry out computer simulations efficiently, covers both descriptive and pseudocode algorithms that provide the basis for implementation of the simulation methods, and illustrates real-world problems through case studies.

The text first emphasizes the importance of analogy and simulation using examples from a variety of areas, before introducing general sampling methods and the different stages of drug development. It then focuses on simulation approaches based on game theory and the Markov decision process, simulations in classical and adaptive trials, and various challenges in clinical trial management and execution. The author goes on to cover prescription drug marketing strategies and brand planning, molecular design and simulation, computational systems biology and biological pathway simulation with Petri nets, and physiologically based pharmacokinetic modeling and pharmacodynamic models. The final chapter explores Monte Carlo computing techniques for statistical inference.

This book offers a systematic treatment of computer simulation in drug development. It not only deals with the principles and methods of Monte Carlo simulation, but also the applications in drug development, such as statistical trial monitoring, prescription drug marketing, and molecular docking.

"Overall, the book does not only cover a very broad range of different topics but manages to explain these coherently. … this book is not only of interest for scientists in the pharmaceutical industry but also for academia due to its thorough presentation."
—Frank Emmert-Streib, Statistical Methods in Medical Research, 21(6), 2012

"… well written and easy to read. … this book is worthwhile reading as a long introduction to Monte Carlo simulation and its eventual application in pharmaceutical industry. It can convince people to consider this methodology …"
—Sophie Donnet, International Statistical Review, 2012

"This is an ambitious book covering a very wide array of topics … the theoretical presentation is reliable and sophisticated … the ability of the author to condense such a broad array of topics, and to present them in a cohesive manner, is quite impressive, and means that the book will contain information of relevance to a wide audience. … Many statisticians working in the pharmaceutical industry will benefit from having access to a copy of this book. Some statisticians working outside the industry may also benefit from having access to a copy, particularly those working in areas overlapping with the pharmaceutical industry, such as clinical science and health economics."
—Ian C. Marschner, Australian & New Zealand Journal of Statistics, 2011

"For industry statisticians, scientists, and software engineers and programmers, Chang, who works for a pharmaceutical company, details concepts, theories, algorithms, and case studies for carrying out computer simulations in the drug development process, from drug discovery to clinical trial aspects to commercialization. He covers analogy and simulation using examples from different areas, general sampling methods and the different stages of drug development, simulation approaches based on game theory and the Markov decision process, simulations in classical and adaptive trials, and challenges in clinical trial management and execution. He then addresses prescription drug marketing strategies and brand planning, molecular design and simulation, computational systems biology and biological pathway simulation with Petri nets, and physiologically based pharmacokinetic modeling and pharmacodynamic models, ending with Monte Carlo computing techniques for statistical inference."
SciTech Book News, February 2011

ISBN: 9781138374386

Dimensions: unknown

Weight: 453g

564 pages