Multiobjective Optimization Methodology

A Jumping Gene Approach

KS Tang author TM Chan author RJ Yin author KF Man author

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:9th Mar '18

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Multiobjective Optimization Methodology cover

The first book to focus on jumping genes outside bioscience and medicine, Multiobjective Optimization Methodology: A Jumping Gene Approach introduces jumping gene algorithms designed to supply adequate, viable solutions to multiobjective problems quickly and with low computational cost.

Better Convergence and a Wider Spread of Nondominated Solutions

The book begins with a thorough review of state-of-the-art multiobjective optimization techniques. For readers who may not be familiar with the bioscience behind the jumping gene, it then outlines the basic biological gene transposition process and explains the translation of the copy-and-paste and cut-and-paste operations into a computable language.

To justify the scientific standing of the jumping genes algorithms, the book provides rigorous mathematical derivations of the jumping genes operations based on schema theory. It also discusses a number of convergence and diversity performance metrics for measuring the usefulness of the algorithms.

Practical Applications of Jumping Gene Algorithms

Three practical engineering applications showcase the effectiveness of the jumping gene algorithms in terms of the crucial trade-off between convergence and diversity. The examples deal with the placement of radio-to-fiber repeaters in wireless local-loop systems, the management of resources in WCDMA systems, and the placement of base stations in wireless local-area networks.

Offering insight into multiobjective optimization, the authors show how jumping gene algorithms are a useful addition to existing evolutionary algorithms, particularly to obtain quick convergence solutions and solutions to outliers.

"This is an interesting and practical book. It is easy to read [and] provides good background information ... [and] cutting-edge technologies to solve the challenging multi-objective optimization problems."
—Mo-Yuen Chow, North Carolina State University, Raleigh, USA

"The authors describe the jumping gene approach to solve multiobjective optimization problems. It is quite [a] new approach and complements standard operations used in genetic algorithms."
—Marcin Anholcer (Poznan), Zentralblatt MATH 1273

ISBN: 9781138072558

Dimensions: unknown

Weight: 453g

280 pages