DownloadThe Portobello Bookshop Gift Guide 2024

Deep Learning on Graphs

Jiliang Tang author Yao Ma author

Format:Hardback

Publisher:Cambridge University Press

Published:23rd Sep '21

Should be back in stock very soon

Deep Learning on Graphs cover

A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.

This comprehensive text on the theory and techniques of graph neural networks takes students, practitioners, and researchers from the basics to the state of the art. It systematically introduces foundational topics such as filtering pooling, robustness, and scalability and then demonstrates applications in NLP, data mining, vision and healthcare.Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines.

'This timely book covers a combination of two active research areas in AI: deep learning and graphs. It serves the pressing need for researchers, practitioners, and students to learn these concepts and algorithms, and apply them in solving real-world problems. Both authors are world-leading experts in this emerging area.' Huan Liu, Arizona State University
'Deep learning on graphs is an emerging and important area of research. This book by Yao Ma and Jiliang Tang covers not only the foundations, but also the frontiers and applications of graph deep learning. This is a must-read for anyone considering diving into this fascinating area.' Shuiwang Ji, Texas A&M University
'The first textbook of Deep Learning on Graphs, with systematic, comprehensive and up-to-date coverage of graph neural networks, autoencoder on graphs, and their applications in natural language processing, computer vision, data mining, biochemistry and healthcare. A valuable book for anyone to learn this hot theme!' Jiawei Han, University of Illinois at Urbana-Champaign
'This book systematically covers the foundations, methodologies, and applications of deep learning on graphs. Especially, it comprehensively introduces graph neural networks and their recent advances. This book is self-contained and nicely structured and thus suitable for readers with different purposes. I highly recommend those who want to conduct research in this area or deploy graph deep learning techniques in practice to read this book.' Charu Aggarwal, Distinguished Research Staff Member at IBM and recipient of the W. Wallace McDowell Award

ISBN: 9781108831741

Dimensions: 234mm x 155mm x 23mm

Weight: 610g

400 pages