Big Data Analytics

A Guide to Data Science Practitioners Making the Transition to Big Data

Ulrich Matter author

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:4th Sep '23

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Big Data Analytics cover

Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data.
Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data.

Key Features:

- Includes many code examples in R and SQL, with R/SQL scripts freely provided online.
- Extensive use of real datasets from empirical economic research and business analytics, with data files freely provided online.
- Leads students and practitioners to think critically about where the bottlenecks are in practical data analysis tasks with large data sets, and how to address them.

The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences.

“This book is a superb practical guide for data scientists and graduate students in business and economics interested in data analytics. The combination of a clear introduction to the concepts and techniques of big data analytics with examples of how to code these tools makes this book both accessible and practical. I highly recommend this book to anyone seeking to prepare themselves for the ever-evolving world of data analytics in business and economics research.”
- Oded Netzer, Vice Dean for Research, Columbia Business School

"Ulrich Matter’s book on Big Data Analytics is an ideal resource for academics and corporate practitioners who have had some exposure to data analytics and want to enrich their toolbox to handle Big Data. This monograph sets the scene from many points of view: programming techniques, databases, distributed computing, Big Data handling, visualization, machine learning, and GPU deployment. Even though R has been chosen as the programming language, many techniques discussed in the book are not R-dependent and can be easily translated into other languages and computing environments. The writing style makes this handbook useful both as a main reference in the teaching of a course in related topics as well as an aid for those who want to learn the material independently. The author’s approach is 100% hands-on. Not much attention is paid to the technical aspects involving algorithms; all the focus goes to implementation strategies and to the specificities of the interplay between programming, hardware, databases, and visualization problems that arises in Big Data contexts. The book has been thoroughly tested in classes that the author has been teaching for a number of years, which makes it a safe bet for those looking for a textbook on the topic. I highly recommend it!"
- Juan-Pablo Ortega, Head, Division of Mathematical Sciences, Nanyang Technological University

ISBN: 9781032458144

Dimensions: unknown

Weight: 460g

310 pages