Multi-Sensor and Multi-Temporal Remote Sensing
Specific Single Class Mapping
Anil Kumar author Priyadarshi Upadhyay author Uttara Singh author
Format:Paperback
Publisher:Taylor & Francis Ltd
Published:30th Jan '25
£45.99
Supplier delay - available to order, but may take longer than usual.
This paperback is available in another edition too:
- Hardback£84.99(9781032428321)
This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields.
Key features:
- Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes
- Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise
- Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI)
- Discusses the role of training data to handle the heterogeneity within a class
- Supports multi-sensor and multi-temporal data processing through in-house SMIC software
- Includes case studies and practical applications for single class mapping
This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.
ISBN: 9781032446523
Dimensions: unknown
Weight: 330g
148 pages