Networked Nonlinear Stochastic Time-Varying Systems

Analysis and Synthesis

Zidong Wang author Hongli Dong author Nan Hou author

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:7th Oct '24

£46.99

Supplier delay - available to order, but may take longer than usual.

This paperback is available in another edition too:

Networked Nonlinear Stochastic Time-Varying Systems cover

Networked Non-linear Stochastic Time-Varying Systems: Analysis and Synthesis copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities. Divided into three parts, the book discusses the finite-horizon filtering, fault estimation and reliable control, and randomly occurring nonlinearities/uncertainties followed by designing of distributed state and fault estimators, and distributed filters. The third part includes problems of variance-constrained H∞ state estimation, partial-nodes-based state estimation and recursive filtering for nonlinear time-varying complex networks with randomly varying topologies, and random coupling strengths.

  • Offers a comprehensive treatment of the topics related to Networked Nonlinear Stochastic Time-Varying Systems with rigorous math foundation and derivation
  • Unifies existing and emerging concepts concerning control/filtering/estimation and distributed filtering
  • Provides a series of latest results by drawing on the conventional theories of systems science, control engineering and signal processing Deal with practical engineering problems such as event triggered H∞ filtering, non-fragile distributed estimation, recursive filtering, set-membership filtering
  • Demonstrates illustrative examples in each chapter to verify the correctness of the proposed results

This book is aimed at engineers, mathematicians, scientists, and upper-level students in the fields of control engineering, signal processing, networked control systems, robotics, data analysis, and automation.

ISBN: 9781032038803

Dimensions: unknown

Weight: 512g

256 pages