DownloadThe Portobello Bookshop Gift Guide 2024

Algebraic Number Theory for Beginners

Following a Path From Euclid to Noether

John Stillwell author

Format:Paperback

Publisher:Cambridge University Press

Published:11th Aug '22

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Algebraic Number Theory for Beginners cover

A concise and well-motivated introduction to algebraic number theory, following the evolution of unique prime factorization through history.

This book, meant for undergraduate mathematics students and teachers, introduces algebraic number theory through problems from ordinary number theory that can be solved with the help of algebraic numbers, using a suitable generalization of unique prime factorization. The material is motivated by weaving historical information throughout.This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.

'In Algebraic Number Theory for Beginners, John Stillwell once again displays his remarkable talent for using the history of mathematics to motivate and explore even the most abstract mathematical concepts at an accessible, undergraduate level. This book is another gem of the genre Stillwell has done so much to enhance.' Karen Hunger Parshall, University of Virginia
'Stillwell, more than any author I know, helps us understand mathematics from its roots. In this book, he leads us into algebraic number theory along a historical route from concrete to abstract. In doing so, Stillwell makes a strong pedagogical case for flipping a typical algebraic number theory course — that students will understand number theory better if questions about numbers come before and throughout the abstract theory of rings and ideals. The treatments of mathematics and its history are crystal clear and meticulous. Stillwell's text is particularly well-suited for an advanced undergraduate or early graduate-level course in number theory. Experts also will find this text to be an incredible resource for its historical approach and well-motivated exercises. Stillwell has written another gem, this time for readers interested in number theory, abstract algebra, and their intertwined history.' Martin Weissman, University of California, Santa Cruz

ISBN: 9781009001922

Dimensions: 228mm x 151mm x 13mm

Weight: 360g

250 pages