Backpropagation

Theory, Architectures, and Applications

David E Rumelhart editor Yves Chauvin editor

Format:Paperback

Publisher:Taylor & Francis Inc

Published:1st Feb '95

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Backpropagation cover

Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.

ISBN: 9780805812596

Dimensions: unknown

Weight: 793g

576 pages