An Extension of Casson's Invariant

Kevin Walker author

Format:Paperback

Publisher:Princeton University Press

Published:1st Jul '92

Currently unavailable, and unfortunately no date known when it will be back

An Extension of Casson's Invariant cover

This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M.

"[This is] a monograph describing Walker's extension of Casson's invariant to Q HS ... This is a fascinating subject and Walker's book is informative and well written ... it makes a rather pleasant introduction to a very active area in geometric topology."--Bulletin of the American Mathematical Society

ISBN: 9780691025322

Dimensions: unknown

Weight: 198g

150 pages