DownloadThe Portobello Bookshop Gift Guide 2024

Calculus

Early Transcendental Functions, International Edition

Ron Larson author Bruce Edwards author

Format:Hardback

Publisher:Cengage Learning, Inc

Published:15th Mar '10

Currently unavailable, and unfortunately no date known when it will be back

Calculus cover

This resource for calculus education offers clear explanations and comprehensive teaching tools. Calculus effectively meets the needs of students and instructors alike.

This comprehensive resource provides both instructors and students with effective tools for teaching and learning calculus. Calculus is specifically designed for the three-semester engineering calculus course, ensuring that it meets the diverse needs of learners. The Larson team focuses on two primary goals when revising the text: to create precise, accessible materials that clearly explain calculus concepts and rules, and to offer instructors comprehensive teaching resources that utilize established pedagogical techniques while saving valuable time.

In Calculus, the authors prioritize the mastery of traditional calculus skills, recognizing their importance in a solid mathematical foundation. The text also embraces modern technology and innovative calculus reform ideas, making it relevant for today's learners. Each edition, from the first to the fifth, has evolved to incorporate the latest educational practices while maintaining a strong emphasis on clarity and precision.

The Larson/Edwards Calculus program stands out by addressing the needs of any calculus course and accommodating students at various skill levels. With its blend of traditional and contemporary approaches, Calculus serves as an essential resource for both instructors and students, fostering a deeper understanding of calculus principles and their applications in engineering and beyond.

1. PREPARATION FOR CALCULUS. Graphs and Models. Linear Models and Rates of Change. Functions and Their Graphs. Fitting Models to Data. Inverse Functions. Exponential and Logarithmic Functions. 2. LIMITS AND THEIR PROPERTIES. A Preview of Calculus. Finding Limits Graphically and Numerically. Evaluating Limits Analytically. Continuity and One-Sided Limits. Infinite Limits. Section Project: Graphs and Limits of Trigonometric Functions. 3. DIFFERENTIATION. The Derivative and the Tangent Line Problem. Basic Differentiation Rules and Rates of Change. Product and Quotient Rules and Higher-Order Derivatives. The Chain Rule. Implicit Differentiation. Section Project: Optical Illusions. Derivatives of Inverse Functions. Related Rates. Newton's Method. 4. APPLICATIONS OF DIFFERENTIATION. Extrema on an Interval. Rolle's Theorem and the Mean Value Theorem. Increasing and Decreasing Functions and the First Derivative Test. Section Project: Rainbows. Concavity and the Second Derivative Test. Limits at Infinity. A Summary of Curve Sketching. Optimization Problems. Section Project: Connecticut River. Differentials. 5. INTEGRATION. Antiderivatives and Indefinite Integration. Area. Riemann Sums and Definite Integrals. The Fundamental Theorem of Calculus. Section Project: Demonstrating the Fundamental Theorem. Integration by Substitution. Numerical Integration. The Natural Logarithmic Function: Integration. Inverse Trigonometric Functions: Integration. Hyperbolic Functions. Section Project: St. Louis Arch. 6. DIFFERENTIAL EQUATIONS. Slope Fields and Euler's Method. Differential Equations: Growth and Decay. Differential Equations: Separation of Variables. The Logistic Equation. First-Order Linear Differential Equations. Section Project: Weight Loss. Predator-Prey Differential Equations. 7. APPLICATIONS OF INTEGRATION. Area of a Region Between Two Curves. Volume: The Disk Method. Volume: The Shell Method. Section Project: Saturn. Arc Length and Surfaces of Revolution. Work. Section Project: Tidal Energy. Moments, Centers of Mass, and Centroids. Fluid Pressure and Fluid Force. 8. Integration Techniques, L'Hopital's Rule, and Improper Integrals. Basic Integration Rules. Integration by Parts. Trigonometric Integrals. Section Project: Power Lines. Trigonometric Substitution. Partial Fractions. Integration by Tables and Other Integration Techniques. Indeterminate Forms and L'Hopital's Rule. Improper Integrals. 9. INFINITE SERIES. Sequences. Series and Convergence. Section Project: Cantor's Disappearing Table. The Integral Test and p-Series. Section Project: The Harmonic Series. Comparisons of Series. Section Project: Solera Method. Alternating Series. The Ratio and Root Tests. Taylor Polynomials and Approximations. Power Series. Representation of Functions by Power Series. Taylor and Maclaurin Series. 10. CONICS, PARAMETRIC EQUATIONS, AND POLAR COORDINATES. Conics and Calculus. Plane Curves and Parametric Equations. Section Projects: Cycloids. Parametric Equations and Calculus. Polar Coordinates and Polar Graphs. Section Project: Anamorphic Art. Area and Arc Length in Polar Coordinates. Polar Equations of Conics and Kepler's Laws. 11. VECTORS AND THE GEOMETRY OF SPACE. Vectors in the Plane. Space Coordinates and Vectors in Space. The Dot Product of Two Vectors. The Cross Product of Two Vectors in Space. Lines and Planes in Space. Section Project: Distances in Space. Surfaces in Space. Cylindrical and Spherical Coordinates. 12. VECTOR-VALUED FUNCTIONS. Vector-Valued Functions. Section Project: Witch of Agnesi. Differentiation and Integration of Vector-Valued Functions. Velocity and Acceleration. Tangent Vectors and Normal Vectors. Arc Length and Curvature. 13. FUNCTIONS OF SEVERAL VARIABLES. Introduction to Functions of Several Variables. Limits and Continuity. Partial Derivatives. Section Project: Moire Fringes. Differentials. Chain Rules for Functions of Several Variables. Directional Derivatives and Gradients. Tangent Planes and Normal Lines. Section Project: Wildflowers. Extrema of Functions of Two Variables. Applications of Extrema of Functions of Two Variables. Section Project: Building a Pipeline. Lagrange Multipliers. 14. MULTIPLE INTEGRATION. Iterated Integrals and Area in the Plane. Double Integrals and Volume. Change of Variables: Polar Coordinates. Center of Mass and Moments of Inertia. Section Project: Center of Pressure on a Sail. Surface Area. Section Project: Capillary Action. Triple Integrals and Applications. Triple Integrals in Cylindrical and Spherical Coordinates. Section Project: Wrinkled and Bumpy Spheres. Change of Variables: Jacobians. 15. VECTOR ANALYSIS. Vector Fields. Line Integrals. Conservative Vector Fields and Independence of Path. Green's Theorem. Section Project: Hyperbolic and Trigonometric Functions. Parametric Surfaces. Surface Integrals. Section Project: Hyperboloid of One Sheet. Divergence Theorem. Stoke's Theorem.

ISBN: 9780538735513

Dimensions: unknown

Weight: 2563g

1360 pages

5th edition