Sphere Packings, Lattices and Groups
John Conway author Neil J A Sloane author
Format:Hardback
Publisher:Springer-Verlag New York Inc.
Published:7th Dec '98
Should be back in stock very soon
We now apply the algorithm above to find the 121 orbits of norm -2 vectors from the (known) nann 0 vectors, and then apply it again to find the 665 orbits of nann -4 vectors from the vectors of nann 0 and -2. The neighbors of a strictly 24 dimensional odd unimodular lattice can be found as follows. If a norm -4 vector v E II . corresponds to the sum 25 1 of a strictly 24 dimensional odd unimodular lattice A and a !-dimensional lattice, then there are exactly two nonn-0 vectors of ll25,1 having inner product -2 with v, and these nann 0 vectors correspond to the two even neighbors of A. The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows the neighborhood graph for the Niemeier lattices, which has a node for each Niemeier lattice. If A and B are neighboring Niemeier lattices, there are three integral lattices containing A n B, namely A, B, and an odd unimodular lattice C (cf. [Kne4]). An edge is drawn between nodes A and B in Fig. 17.1 for each strictly 24-dimensional unimodular lattice arising in this way. Thus there is a one-to-one correspondence between the strictly 24-dimensional odd unimodular lattices and the edges of our neighborhood graph. The 156 lattices are shown in Table 17 .I. Figure I 7. I also shows the corresponding graphs for dimensions 8 and 16.
Third Edition
J.H. Conway and N.J.A. Sloane
Sphere Packings, Lattices and Groups
"This is the third edition of this reference work in the literature on sphere packings and related subjects. In addition to the content of the preceding editions, the present edition provides in its preface a detailed survey on recent developments in the field, and an exhaustive supplementary bibliography for 1988-1998. A few chapters in the main text have also been revised."—MATHEMATICAL REVIEWS
ISBN: 9780387985855
Dimensions: unknown
Weight: unknown
706 pages
3rd ed. 1999