Machine Learning

Theory to Applications

Seyedeh Leili Mirtaheri author Reza Shahbazian author

Format:Hardback

Publisher:Taylor & Francis Ltd

Published:29th Sep '22

Currently unavailable, and unfortunately no date known when it will be back

This hardback is available in another edition too:

Machine Learning cover

The book reviews core concepts of machine learning (ML) while focusing on modern applications. It is aimed at those who want to advance their understanding of ML by providing technical and practical insights. It does not use complicated mathematics to explain how to benefit from ML algorithms. Unlike the existing literature, this work provides the core concepts with emphasis on fresh ideas and real application scenarios. It starts with the basic concepts of ML and extends the concepts to the different deep learning algorithms. The book provides an introduction and main elements of evaluation tools with Python and walks you through the recent applications of ML in self-driving cars, cognitive decision making, communication networks, security, and signal processing. The concept of generative networks is also presented and focuses on GANs as a tool to improve the performance of existing algorithms.

In summary, this book provides a comprehensive technological path from fundamental theories to the categorization of existing algorithms, covers state-of-the-art, practical evaluation tools and methods to empower you to use synthetic data to improve the performance of applications.

ISBN: 9780367634537

Dimensions: unknown

Weight: 720g

202 pages