Encyclopedia of Knot Theory

Colin Adams editor Louis H Kauffman editor Erica Flapan editor Allison Henrich editor Sam Nelson editor Lewis D Ludwig editor

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:19th Dec '22

Should be back in stock very soon

This paperback is available in another edition too:

Encyclopedia of Knot Theory cover

"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject."

– Ed Witten, Recipient of the Fields Medal

"I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field."

– Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis

Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers.

Features

  • Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers
  • Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees
  • Edited and contributed by top researchers in the field of knot theory
  • <

"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject."
– Ed Witten, Recipient of the Fields Medal

"I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field."
– Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis

"An encyclopedia is expected to be comprehensive, and to include independent expository articles on many topics. The Encyclopedia of Knot Theory is all this. This book will be an excellent introduction to topics in the field of knot theory for advanced undergraduates, graduate students, and researchers interested in knots from many directions."
– MAA Reviews

"Knot theory is an area of mathematics that requires no introduction, and while this massive tome is certainly no introductory text, it does give a panoramic — and, well, encyclopaedic — view of this vast subject.

[. . . ] A book with such an ambitious remit is bound to contain omissions and oddities. [. . .] But this is a small point compared to what has been achieved by this encyclopaedia, which would make a fine addition to any personal or departmental library, or to a departmental coffee table."
– London Mathematical Society

The Encyclopedia of Knot Theory is close to 1000 pages, and every section, article, paragraph, and sentence inspires the reader to want to learn more knot theory. A wonderful attribute of this text is the reference section at the end of each article as opposed to the end of the book. This allows readers to highlight different sources that will allow them to dive deeper into the topic of that section. [. . .] And while it is nearly impossible to include discussions of every branch of the knot theorytree, the editors made a great choice to focus on current topics showing how the area is still a living subject.

[. . .] As a knot theory enthusiast, I truly enjoyed reading about topics I was more familiar with while also exploring topics that were new to me. As an educator, I am excited to share this book with my students and encourage them to read more articles on the topics. Some of the articles in the book include thoughtful open questions for researchers in the field to enjoy, while also providing background for anyone new to knot theory research to use as a foundation. All in all, I loved this text.
– American Mathematical Monthly

ISBN: 9780367623043

Dimensions: unknown

Weight: 1800g

954 pages