Handbook of Computational Social Science, Volume 2

Data Science, Statistical Modelling, and Machine Learning Methods

Uwe Engel editor Anabel Quan-Haase editor Lars Lyberg editor Sunny Liu editor

Format:Hardback

Publisher:Taylor & Francis Ltd

Published:5th Nov '21

Currently unavailable, and unfortunately no date known when it will be back

This hardback is available in another edition too:

Handbook of Computational Social Science, Volume 2 cover

The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches.

The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital trace and textual data, as well as probability, non-probability, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions.

With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.

ISBN: 9780367457808

Dimensions: unknown

Weight: 1100g

412 pages