Introduction to Electrical Interfacial Phenomena

K S Birdi editor

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:2nd Dec '19

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Introduction to Electrical Interfacial Phenomena cover

With the rapid development of nanotechnology, the surface-to-volume ratio of objects of interest continues to increase. As such, so does the importance of our ability to tailor interfacial properties. Written by bestselling author and internationally renowned researcher K.S. Birdi, Introduction to Electrical Interfacial Phenomena offers comprehensive coverage of the field of electrical double layer (EDL) research. Birdi discusses theoretical models used with EDL and demonstrates how they can be applied to typically encountered real-world problems, including those that must be considered in modern industrial applications.

The book explains the EDL through fundamental theory and real-world solved examples from applications such as corrosion, aerosols, dispersions and emulsions, adhesion, storage batteries, waste-water treatment, enhanced oil recovery, biology (proteins at cell membranes), and macromolecules. After introducing the electrical interfacial phenomenon, it describes advanced systems, provides a comprehensive description of the double layer, and presents bonus material on advanced theory separate from the main text. The book also includes application examples that demonstrate EDL analyses to new and developing areas such as enhanced oil recovery, storage batteries, hydrogen fuel cells, and biology.

While there are many books available on this topic, so far none have taken a combined application and fundamental theoretical approach to the problem. Collating available information drawn from the extensive literature on various models of EDL into a comprehensive resource, this book paints a picture of the state of an art that is on the brink of further development. It not only delineates theoretical models, but also demonstrates how they can be applied to real problems.

ISBN: 9780367452353

Dimensions: unknown

Weight: 290g

180 pages