Stochastic Modeling of Scientific Data
Format:Paperback
Publisher:Taylor & Francis Ltd
Published:18th Dec '20
Currently unavailable, and unfortunately no date known when it will be back
This paperback is available in another edition too:
- Hardback£175.00(9780412992810)
Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.
"The author's lucid presentation of his material together with this very great number of applications from life sciences, make this an excellent buy for only thirty pounds for every biometrician."
-Biometrics
"When it comes to introducing Markov chains, everyone talks about the weather but nobody does anything about getting real data. In this book, though, we get not only the pattern of rainfall in Snoqualmie Falls, Washington, but wind directions in South Africa, and interarrival times of cyclones in the bay of Bengal. The objecive is to provide an introduction to stochastic processes suited to those who while not necessarily shy of mathematics, are primarily interested in problems with the flavor of real life...still, even hard-bitten mathematical probabilists may find new insights in this insistently realistic approach."
-Zentralblatt fur Mathematik
ISBN: 9780367449001
Dimensions: unknown
Weight: 453g
384 pages