Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare

Mark Chang author

Format:Hardback

Publisher:Taylor & Francis Ltd

Published:5th May '20

Currently unavailable, and unfortunately no date known when it will be back

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare cover

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare covers exciting developments at the intersection of computer science and statistics. While much of machine-learning is statistics-based, achievements in deep learning for image and language processing rely on computer science’s use of big data. Aimed at those with a statistical background who want to use their strengths in pursuing AI research, the book:

· Covers broad AI topics in drug development, precision medicine, and healthcare.

· Elaborates on supervised, unsupervised, reinforcement, and evolutionary learning methods.

· Introduces the similarity principle and related AI methods for both big and small data problems.

· Offers a balance of statistical and algorithm-based approaches to AI.

· Provides examples and real-world applications with hands-on R code.

· Suggests the path forward for AI in medicine and artificial general intelligence.

As well as covering the history of AI and the innovative ideas, methodologies and software implementation of the field, the book offers a comprehensive review of AI applications in medical sciences. In addition, readers will benefit from hands on exercises, with included R code.

'this book offers a comprehensive review of AI, deep learning, and machine learning applications in medical sciences. This book (particularly Chapter 5 and onwards) will be useful for both masters and undergraduate students in biostatistics, who are planning to pursue research in AI towards biomedical applications.'

- Chitaranjan Mahapatra, International Society for Clinical Biostatistics, 71, 2021


"This is an interesting and informative book...The book contains R code for many applications so the reader can immediately put many of the ideas into practice by adapting the R code."
- Peter Wludyka, in Technometrics, October 2020

"This book would be a neat addition to the practitioner's reference library of statistical methodologies for healthcare data analysis based on artificial intelligence (AI) and machine learning. The technical narrative is written in recipes; these are sandwiched between a high-level introduction (comprising modern AI and machine learning, classical statistics, and the similarity principle) and an epilogue espousing the author's perspectives about future progress in modern AI. The statistical recipes include example R programming code for the following methodologies (...). It is a compactly written book that could serve as a handy reference guide (i.e., cookbook) for the practitioner who would need to quickly review a new methodology and understand the bigger picture as it would relate to applications in healthcare."
- Frank Yoon in International Statistics Review, March 2021

ISBN: 9780367362928

Dimensions: unknown

Weight: 861g

372 pages