Time Series Analysis by State Space Methods

Siem Jan Koopman author The late James Durbin author

Format:Hardback

Publisher:Oxford University Press

Published:3rd May '12

Should be back in stock very soon

Time Series Analysis by State Space Methods cover

This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.

Review from previous edition ...provides an up-to-date exposition and comprehensive treatment of state space models in time series analysis...This book will be helpful to graduate students and applied statisticians working in the area of econometric modelling as well as researchers in the areas of engineering, medicine and biology where state space models are used. * Journal of the Royal Statistical Society *

ISBN: 9780199641178

Dimensions: 235mm x 161mm x 26mm

Weight: 680g

368 pages

2nd Revised edition