Arithmetical Similarities

Prime Decomposition and Finite Group Theory

Norbert Klingen author

Format:Hardback

Publisher:Oxford University Press

Published:30th Apr '98

Currently unavailable, and unfortunately no date known when it will be back

Arithmetical Similarities cover

This book deals with the characterization of extensions of number fields in terms of the decomposition of prime ideals, and with the group-theoretic questions arising from this number-theoretic problem. One special aspect of this question is the equality of Dedekind zeta functions of different number fields. This is an established problem which was solved for abelian extensions by class field theory, but which was only studied in detail in its general form from around 1970. The basis for the new results was a fruitful exchange between number theory and group theory. Some of the outstanidng results are based on the complete classification of all finite simple groups. This book reports on the great progress achieved in this period. It allows access to the new developments in this part of algebraic number theory and contains a unique blend of number theory and group theory. The results appear for the first time in a monograph and they partially extend the published literature.

'...gives a very useful discussion of several 'generalisations and refinements of the theory developed in the preceding chapters, as well as [...] results from related areas which use the smae methods or lead to similar group theoretic problems' It may be regarded as a guide to the literature, and provides numerous sugggestions for further work' Bulletin London Mathematical Society

ISBN: 9780198535980

Dimensions: 242mm x 161mm x 19mm

Weight: 575g

286 pages